Định nghĩa đạo hàm cùa f(x)
tại x₀
là (x - x₀) / (f(x) - f(x₀))
khi x
tiến dần đến x₀
Bài 1 thì x₀ = 0
em thấy khi x
tiến đến 0
theo chiều tăng thì thu được 1 kết quả (+∞), tiến đến theo chiều giảm thì thu được kết quả khác (-∞). Như vậy tại x = 0
, f(x)
chỉ tồn tại đạo hàm một phía. Còn vụ nó là cực trị thì vẽ bảng biến thiên ra rồi nhận xét 
Bài 2 thì em tìm phương trình đạo hàm bậc nhất (là y'
đó) rồi giải phương trình y' = 0
để tìm 2 cực trị x₁
và x₂
theo a
(vì f(x)
có b
là nhân tử bậc 0 nên y'
không liên quan gì đến b
). Mà f(x)
đạt cực trị tại x = x₁
và x = x₂
nên y'(x₁)
và y'(x₂)
bằng 0, thay vào kết quả x₁
và x₂
theo a
ở trên, kết hợp với x₁
hoặc x₂
= -5/9 thì tính được a
.
Tính được a
thì tính f(x)
với x = x₁
, x = x₂
và x = -5/9
theo b
. Tính chất của hàm bậc 3 là f(x) tại cực đại lớn hơn f(x) tại cực tiểu, kết hợp với yêu cầu f(x₁)
và f(x₂)
đều dương thì suy ra b
P/s: Đã sửa theo góp ý ở dưới, lúc nãy vừa gõ vừa nghĩ nên gõ thiếu 