I want to calculate the mean value of each object on this dataframe:
index | detection_class_names | detection_class_entities | detection_class_labels | detection_scores |
---|---|---|---|---|
0 | /m/01g317 | Person | 69 | 0.7965893 |
1 | /m/01g317 | Person | 69 | 0.7868858 |
2 | /m/01g317 | Person | 69 | 0.785902 |
3 | /m/01g317 | Person | 69 | 0.77137744 |
4 | /m/01g317 | Person | 69 | 0.770353 |
5 | /m/01g317 | Person | 69 | 0.7686965 |
6 | /m/01g317 | Person | 69 | 0.7597503 |
7 | /m/01g317 | Person | 69 | 0.75952464 |
8 | /m/01g317 | Person | 69 | 0.7312174 |
9 | /m/01g317 | Person | 69 | 0.69465923 |
10 | /m/01g317 | Person | 69 | 0.6754475 |
11 | /m/01g317 | Person | 69 | 0.63933325 |
12 | /m/01g317 | Person | 69 | 0.5939468 |
13 | /m/01g317 | Person | 69 | 0.54122645 |
14 | /m/01g317 | Person | 69 | 0.47619903 |
15 | /m/01g317 | Person | 69 | 0.3954147 |
16 | /m/01g317 | Person | 69 | 0.24747418 |
17 | /m/04yx4 | Man | 308 | 0.21528831 |
18 | /m/01g317 | Person | 69 | 0.19553629 |
19 | /m/01g317 | Person | 69 | 0.18318504 |
20 | /m/01g317 | Person | 69 | 0.17788896 |
21 | /m/01g317 | Person | 69 | 0.16685289 |
22 | /m/01g317 | Person | 69 | 0.15162204 |
23 | /m/04yx4 | Man | 308 | 0.14820576 |
24 | /m/01g317 | Person | 69 | 0.14413418 |
25 | /m/01g317 | Person | 69 | 0.12246804 |
26 | /m/04yx4 | Man | 308 | 0.11826622 |
27 | /m/04yx4 | Man | 308 | 0.11152366 |
28 | /m/04yx4 | Man | 308 | 0.11139107 |
29 | /m/01g317 | Person | 69 | 0.10962985 |
30 | /m/01g317 | Person | 69 | 0.10439652 |
31 | /m/083wq | Wheel | 409 | 0.090862416 |
32 | /m/06msq | Sculpture | 359 | 0.08330029 |
33 | /m/01g317 | Person | 69 | 0.08234371 |
34 | /m/05y5lj | Sports equipment | 337 | 0.078681745 |
35 | /m/09j2d | Clothing | 433 | 0.0768458 |
36 | /m/04yx4 | Man | 308 | 0.075884864 |
37 | /m/04yx4 | Man | 308 | 0.06740342 |
38 | /m/01g317 | Person | 69 | 0.06324577 |
39 | /m/04yx4 | Man | 308 | 0.06278986 |
40 | /m/01g317 | Person | 69 | 0.06277132 |
41 | /m/04yx4 | Man | 308 | 0.060511187 |
42 | /m/04yx4 | Man | 308 | 0.055817537 |
43 | /m/083wq | Wheel | 409 | 0.05531507 |
44 | /m/09j2d | Clothing | 433 | 0.050744954 |
45 | /m/04yx4 | Man | 308 | 0.05006243 |
46 | /m/09j2d | Clothing | 433 | 0.049922056 |
47 | /m/09j2d | Clothing | 433 | 0.049681067 |
48 | /m/04yx4 | Man | 308 | 0.04912561 |
49 | /m/0b_rs | Swimming pool | 445 | 0.048854742 |
50 | /m/05y5lj | Sports equipment | 337 | 0.04200941 |
51 | /m/01g317 | Person | 69 | 0.041352615 |
52 | /m/04yx4 | Man | 308 | 0.04089966 |
53 | /m/09j2d | Clothing | 433 | 0.040262185 |
54 | /m/04yx4 | Man | 308 | 0.0390447 |
55 | /m/0h8mhzd | Sports uniform | 540 | 0.038814023 |
56 | /m/01g317 | Person | 69 | 0.038691193 |
57 | /m/04yx4 | Man | 308 | 0.03564315 |
58 | /m/04yx4 | Man | 308 | 0.03502448 |
59 | /m/01g317 | Person | 69 | 0.03491944 |
60 | /m/09j2d | Clothing | 433 | 0.03437933 |
61 | /m/01g317 | Person | 69 | 0.03309837 |
62 | /m/01g317 | Person | 69 | 0.032974593 |
63 | /m/09j2d | Clothing | 433 | 0.032671154 |
64 | /m/04rky | Mammal | 298 | 0.032538544 |
65 | /m/01g317 | Person | 69 | 0.031221595 |
66 | /m/01g317 | Person | 69 | 0.03066326 |
67 | /m/04yx4 | Man | 308 | 0.030130534 |
68 | /m/04rky | Mammal | 298 | 0.030032743 |
69 | /m/09j2d | Clothing | 433 | 0.029718297 |
70 | /m/09j2d | Clothing | 433 | 0.0291651 |
71 | /m/09j2d | Clothing | 433 | 0.028960558 |
72 | /m/09j2d | Clothing | 433 | 0.028387893 |
73 | /m/04yx4 | Man | 308 | 0.027450493 |
74 | /m/01g317 | Person | 69 | 0.027107958 |
75 | /m/04yx4 | Man | 308 | 0.027106939 |
76 | /m/01g317 | Person | 69 | 0.025961738 |
77 | /m/01g317 | Person | 69 | 0.025673656 |
78 | /m/09j2d | Clothing | 433 | 0.025575927 |
79 | /m/01g317 | Person | 69 | 0.02499498 |
80 | /m/04yx4 | Man | 308 | 0.024569038 |
81 | /m/09j2d | Clothing | 433 | 0.024464408 |
82 | /m/04rky | Mammal | 298 | 0.024349347 |
83 | /m/01g317 | Person | 69 | 0.024307335 |
84 | /m/01g317 | Person | 69 | 0.023867775 |
85 | /m/04rky | Mammal | 298 | 0.023107737 |
86 | /m/04yx4 | Man | 308 | 0.02282769 |
87 | /m/04rky | Mammal | 298 | 0.022633953 |
88 | /m/0138tl | Toy | 11 | 0.022467108 |
89 | /m/01g317 | Person | 69 | 0.022245709 |
90 | /m/04yx4 | Man | 308 | 0.021241672 |
91 | /m/01g317 | Person | 69 | 0.021194538 |
92 | /m/09j2d | Clothing | 433 | 0.019970622 |
93 | /m/04rky | Mammal | 298 | 0.019421574 |
94 | /m/04rky | Mammal | 298 | 0.019058326 |
95 | /m/01rzcn | Watercraft | 106 | 0.018701846 |
96 | /m/04rky | Mammal | 298 | 0.017770693 |
97 | /m/09j2d | Clothing | 433 | 0.017455762 |
98 | /m/01g317 | Person | 69 | 0.017210666 |
99 | /m/04yx4 | Man | 308 | 0.017077602 |
df2.groupby('detection_class_entities', as_index=False)['detection_scores'].mean()
result:
/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py:3326: FutureWarning: Dropping invalid columns in DataFrameGroupBy.mean is deprecated. In a future version, a TypeError will be raised. Before calling .mean, select only columns which should be valid for the function.
exec(code_obj, self.user_global_ns, self.user_ns)
index | detection_class_entities |
---|---|
0 | Clothing |
1 | Mammal |
2 | Man |
3 | Person |
4 | Sculpture |
5 | Sports equipment |
6 | Sports uniform |
7 | Swimming pool |
8 | Toy |
9 | Watercraft |
10 | Wheel |
How can fix?
Thank